Infrared Spectroscopy as Molecular Probe of the Macroscopic Metal-Liquid Interface

نویسندگان

  • Johannes Kiefer
  • Johan Zetterberg
  • Andreas Ehn
  • Jonas Evertsson
  • Gary Harlow
  • Edvin Lundgren
چکیده

Metal-liquid interfaces are of the utmost importance in a number of scientific areas, including electrochemistry and catalysis. However, complicated analytical methods and sample preparation are usually required to study the interfacial phenomena. We propose an infrared spectroscopic approach that enables investigating the molecular interactions at the interface, but needing only minimal or no sample preparation. For this purpose, the internal reflection element (IRE) is wetted with a solution as first step. Second, a small plate of the metal of interest is put on top and pressed onto the IRE. The tiny amount of liquid that is remaining between the IRE and the metal is sufficient to produce an IR spectrum with good signal to noise ratio, from which information about molecular interactions, such as hydrogen bonding, can be deduced. Proof-of-concept experiments were carried out with aqueous salt and acid solutions and an aluminum plate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy.

In this paper, we demonstrate our ability to directly probe the molecular structures of the buried polymer/metal interface using sum frequency generation (SFG) vibrational spectroscopy. Spectroscopic data from different experimental approaches were compared and analyzed to deduce the molecular ordering information at a buried polymer/metal interface, i.e. the poly(n-butyl methylacrylate) (PBMA)...

متن کامل

Preparation and characterization of ultrathin dual-layer ionic liquid lubrication film assembled on silica surfaces.

A novel ultrathin dual-layer film, which contained both bonded and mobile phases in ionic liquids (ILs) layer, was fabricated successfully on a silicon substrate modified by a self-assembled monolayer (SAM). The formation and surface properties of the films were analyzed using ellipsometer, water contact angle meter, attenuated total reflectance Fourier transform infrared spectroscopy, multi-fu...

متن کامل

Functionalized Au/Ag nanocages as a novel fluorescence and SERS dual probe for sensing.

We obtained chitosan-protected Au/Ag nanocages (NCs), i.e., hollow and porous metallic nanoparticles, by galvanic replacement reaction. Subsequently, we functionalized the NCs with a fluorescent derivative of 4-methoxy-1,8-naphtalimide (NAFTA6). The plasmonic properties of these structures, which exhibit an extinction maximum in the 700-800 nm range, allowed their use as SERS active substrates ...

متن کامل

Atmospheric corrosion

Atmospheric corrosion, the most common form of metal corrosion, occurs within the interfacial region between a solid, and the surrounding atmosphere. In fact three phases and two interfaces are involved: the gas, a thin liquid layer, a solid, the gas/liquid and the liquid/solid interfaces. In this thesis, the vapor/liquid and liquid/metal interfaces have been studied by the in-situ techniques v...

متن کامل

Theory and Computation of Liquids and Liquid Interfaces

The following projects 1 and 2 focus on the development of theory and computational analysis methods for interfacial sum frequency generation (SFG) spectroscopy and its application to aqueous interfaces. The visible-infrared sum frequency generation spectroscopy is a powerful method to obtain interface-specific vibrational spectra. While this experimental technique is now widely used as an inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017